Triple-mode single-transistor graphene amplifier and its applications.

نویسندگان

  • Xuebei Yang
  • Guanxiong Liu
  • Alexander A Balandin
  • Kartik Mohanram
چکیده

We propose and experimentally demonstrate a triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor. The ambipolar nature of electronic transport in graphene transistors leads to increased amplifier functionality as compared to amplifiers built with unipolar semiconductor devices. The ambipolar graphene transistors can be configured as n-type, p-type, or hybrid-type by changing the gate bias. As a result, the single-transistor graphene amplifier can operate in the common-source, common-drain, or frequency multiplication mode, respectively. This in-field controllability of the single-transistor graphene amplifier can be used to realize the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless applications. It also offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene polarity controllable amplifier and its applications

This paper exploits the unique ambipolar conduction property of graphene field effect transistors to realize a single transistor polarity controllable amplifier. The amplifier is polarity controllable since its small signal gain can be switched between positive and negative modes through proper biasing. Polarity controllable amplifiers can greatly simplify communication circuits in applications...

متن کامل

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Voltage Differencing Buffered Amplifier based Voltage Mode Four Quadrant Analog Multiplier and its Applications

In this paper a voltage mode four quadrant analog multiplier (FQAM) using voltage differencing buffered amplifier (VDBA) based on quarter square algebraic identity is presented. In the proposed FQAM the passive resistor can be implemented using MOSFETs operating in saturationregion thereby making it suitable for integration. The effect of non idealities of VDBA has also been analyzed in this pa...

متن کامل

An Improved Tail Current Source For Low Voltage Applications - Solid-State Circuits, IEEE Journal of

A new current source for low-voltage applications is proposed. This current source is well suited for biasing differential pairs and source followers. Measured compliance voltage is slightly smaller than that of a single transistor. Its output resistance is a factor of 25 larger than that of a single transistor current source and was measured to be 8 M : The use of the new current source improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 10  شماره 

صفحات  -

تاریخ انتشار 2010